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The geometrical cell structure of the chemically reacting system is discussed. 
The boundary of the cell uniquely defines the dividing surface between the 
initial reactant side and the final product side. Introducing the concept of the 
intrinsic reaction time (IRT) and the accumulation time (AT) of reaction along 
the meta-IRC (intrinsic reaction coordinate), the intrinsic dynamism in the cell 
is discussed. Then, the stable limit theorems with respect to the intrinsic nature 
of the normal vibrations are derived. The theory is elucidated by using a model 
potential surface. 
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1. Introduction 

Since the establishment of Eyring's absolute rate theory [1], the concept of reaction 
coordinates has been a guiding principle in studying the complicated modes of 
chemical reactions. The fundamental assumptions of this theory consist of El) the 
presence of the activated complex (or transition state) B in the course of the 
chemical reaction A --~ C: 

A ---~ B --~ C, (1.1) 

and E2) the chemical equilibrium between A and B. Usually, the location of the 
activated complex has been ascribed to the transition point, that is the saddle, on 
the adiabatic potential energy surface. In this connection, recent quantum mechan- 
ical calculations have succeeded in developing the efficient algorithms of searching 
for the transition point on the surface [2-4]. 

Recently, Miller [5-7] has devoted himself to the quantum mechanical reformula- 
tion of the absolute rate theory. In this case, the nuclear configuration of the 
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activated complex itself is not the major subject; but the hypersurface S appears 
on which the flux of the trajectories in the phase space takes the minimal value 
[8, 5-7]. Then, the surface S defines the dividing surface by which the initial reactant 
side A and the final product side C are discriminated. Also, the classical rate 
formula of the absolute rate theory has been interpreted quantum mechanically by 
replacing the partition function of the activated complex with the flux integral on 
the dividing surface S [5-7]. But it should be noted that the flux integral itself is 
dependent on the total energy of the reacting system and hence, it is not guaranteed 
that the only one dividing surface S is determined for the given reaction (1.1). Also, 
the relation between the geometrical property of S and that of the adiabatic poten- 
tial energy surface has not been clarified; for example, the transition point B is not 
necessarily located on the dividing surface S. 

On the other hand, Hofacker and his collaborators [9-14] have directed their 
attention to the geometrical property of the reaction path and its relationship with 
tile chemical dynamism in terms of the local quantum mechanics along the reaction 
path. Particularly, they have defined an unbranched reaction path and discussed 
the vibrational (non-)adiabaticity along the reaction path [9, 10]; the essential 
assumptions of their treatments are summarized as follows: H1) the reaction path 
is a curve of minimum Gaussian curvature, and H2) the first derivative of the 
adiabatic potential vanishes on the surface perpendicular to this path. The quantum 
mechanical developments of their theory have been based on the perturbational 
treatments of Podolsky's Hamiltonian [15, 16], where the following simplifications 
are adopted: H3) the kinetic energy operator is separable; that is, the sum of 
squares of individual linear momentum operators, and H4) harmonic oscillator 
approximation for the bound degrees of freedom perpendicular to the reaction path. 
The reaction path characterized by these simplifications has also been referred to 
as the dynamic reaction path [14]; in this connection, Marcus has utilized the con- 
cept of the dynamic reaction path for three-body reactions [14, 17-20]. Note, 
however, that there are some difficulties in the treatments described above. First, 
there has been no mathematical proof for the presence of the unbranched reaction 
path satisfying the criterions HI) and H2). Moreover, since the first derivative of 
the adiabatic potential energy completely vanishes at any equilibrium point, one 
cannot find the direction of the reaction path at the equilibrium point. Second, there 
is an unsatisfactory balance in the perturbational order inherent to the treatment 
of the dynamic reaction path: the simplification H 3) is obtained by the zeroth-order 
perturbation theory of the kinetic energy operator in terms of the deviation of 
coordinates from the reaction path, while the simplification H4) is obtained by the 
second-order perturbation theory of the potential energy operator [9, 10, 12-14]. 
Although the first-order correction to the kinetic energy operator has been partly 
taken into account [9, 10, 12-14], the zeroth-order kinetic energy operator is 
supposed to be insufficient for the quantum mechanical description of the chemical 
dynamism in the region of finite volume. 

Now, Fukui has introduced a concept of intrinsic reaction coordinate (IRC) as the 
reaction path from the initial A to the final C basin (or valley) by way of the 
transition point B on the adiabatic potential energy surface, and given the differen- 
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tial equation of the IRC [21]. Also, Fukui et  al. [22-25] and Morokuma et  al. [26, 
27] have developed the reaction ergodography in terms of the IRC. The IRC 
possesses the outstanding properties that F1) this is the intrinsic solution of 
Lagrange's equation of motion [23] and F2) this converges to one of the stable 
normal coordinates of positive force constants at the stable equilibrium point and 
to the unstable normal coordinate of negative force constant at the transition point 
[21]. Likewise, the general solution of the IRC equation allows the unique definition 
of the reaction coordinate for the reaction starting from any non-equilibrium point 
on the potential energy surface: this solution has been referred to as the meta-IRC, 
and the IRC has been given as the particular case of the meta-IRC [28]. In this 
way, the utility of the IRC approach over the usual qualitative and convenient 
concept of reaction coordinates has been corroborated [21-28]. 

In the present paper, we discuss the dynamism of chemically reacting systems in 
terms of the IRC approach. Particularly, it is shown that the chemically reacting 
system has a cell structure as if the system were an organism. We can then tread 
the cell of A along the IRC, pass through the intercell boundary at the transition 
point B, and finally enter the cell of C along the IRC. The intercell boundary is 
uniquely determined in terms of the geometry of the adiabatic potential energy 
surface. Hence, the intercell boundary allows the unique and natural definition of 
the dividing surface S separating the initial reactant side A and the final product 
side C. Moreover, it should be noted that the solution of the meta-IRC satisfies the 
criterion H2) of the reaction path defined by Hofacker et al. [28]. But the meta-IRC 
cannot be always identified with the reaction path defined by Hofacker et aL, 
because the criterion HI) for the latter concerns the second-order derivative of the 
adiabatic potential energy surface U and the IRC equation concerns only the first 
derivative of U. Furthermore, it will be shown that in the IRC approach, the per- 
turbation-free kinetiic energy operator is obtained by the sum of squares of indivi- 
dual local momentum operators. This property may prove useful for one to 
overcome the difficulty inherent to the approach of the dynamic reaction path [14], 
as welt as to improve the accuracy inherent to the approximate treatment of the 
IRC approach [25] and other approaches [17-20, 29-34] of the same kind. 

The intrinsic dynamism of the chemically reacting system is formulated using a 
pair of time-like parameters: the intrinsic reaction time (IRT) and the accumulation 
time (AT) of reaction. The IRT is defined uniformly all over the configuration space 
as if it were the realistic time, while the AT is defined within the cell or the boundary 
excluding the equilibrium points. In particular, the IRC equation is simplified, as is 
shown in (3.19), if the intrinsic dynamism is represented with respect to the AT. 
Note that this simplified equation (3.19) is similar to the well-known differential 
equation of the dynamical system [35]. Different from the usual dynamical system 
described in the Euclidean space [35], 1) the intrinsic dynamism is formulated in 
the Riemannian space. Moreover, 2) from the definition (3.18), the AT diverges to 
infinity in the limit at the equilibrium point. The limiting property of the AT may 
represent the accumulating behavior of the meta-IRC at the equilibrium point; this 
limiting property of the AT is analogous to that of the time-like parameter used in 
the usual dynamical system [35]. However, it should be noted that the limiting 
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property of the AT can be deduced logically from its definition, while the analogous 
property of the time-like parameter in the usual dynamical system is not provided 
with the apriori reasoning itself. As far as the authors are aware, there is no detailed 
theory that deals with the particular case of the intrinsic dynamism having the 
characteristics 1) and 2). Also shown are the stable limit theorems of the IRC 
approach, which describe an intrinsic nature of the normal vibrations at the stable 
equilibrium point. 

2. Cell Structure in Chemically Reacting Systems 

Let us consider the chemical reaction (1.1) where the reaction proceeds from the 
reactant side A through the transition point B to the product side C. In the case of 
isomerization reaction, the structure of the reacting system is illustrated in Fig. 1 
using the reaction pattern [28]: A and C correspond to the minima of the potential 
energy surface and B corresponds to the saddle. The isomerization reaction is 
described by the idealized locus of nuclei, namely the IRC, as is illustrated in Fig. 1 ; 
note that we consider in this simple reaction scheme that there are no other minima 
on the potential energy surface. Then, any non-equilibrium point on the path AB 
of the IRC corresponds to the nuclear configuration on the reactant side; con- 
versely, any non-equilibrium point on the path BC of the IRC corresponds to the 
nuclear configuration on the product side. Hence, the discrimination of the nuclear 
configuration according to the reactant side and the product side is very clear on 
the IRC. However, in the actual dynamical processes of the chemical reaction, the 
system may take other nuclear configurations bypassing the transition point B. 
Then, the definition for the vague notion of the reactant "s ide"  and the product 
"s ide"  should be firmly established. 

It should be noted here that the vague entity of the "a tomic region" in a molecule 
has become firmly established on a solid theoretical foundation by Badcr et al. 
[36-43]; a certain atomic region (or atomic group region) in a molecule is circum- 
scribed in terms of the distribution of the electron density [36-40], and the regional 
quantum mechanics has been formulated [41-43]. 

Now, in the chemically reacting system, we shall utilize the geometrical property of 
the adiabatic potential energy surface in order to obtain the discernment of the 
reactant side and the product side. In this case, in terms of the mathematical treat- 
ments of abstract gradient vector fields, a manifold is found in the neighborhood of 
the stable equilibrium point of the potential and is often referred to as a basin 
[35, 44]. Since the sophisticated mathematical treatments are forbidding, we shall 
conveniently interpret for the chemically reacting system the concept of the purely 
mathematical object, namely the basin, as the cell, and analyze the intrinsic 
dynamism of the chemical reaction (1.1) in terms of the cell structure of the system. 
In our previous paper [28], we have shown that any reaction starting from a non- 
equilibrium point in the neighborhood of the stable equilibrium point, say A, 
finally reaches A by following the unique meta-IRC. So we have the cell of the 
stable equilibrium point A as follows: the cell of A, or the Cell (A) to be short, is 
a set of the non-equilibrium points on the meta-IRC along which the direction of 
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the gradient force field F = - g r a d  U does not vanish and finally cenverges to the 
stable equilibrium point A. Thus, for any stable equilibrium point A~, we have the 
unique Cell (A,). Within the cell, the progress of any intrinsic reaction is described 
by the meta-IRC, being accompanied by the vibrational degrees of freedom on the 
equi-potential surface which is perpendicular to the meta-IRC [28]; in terms of the 
contravariant character of coordinates, the promoting mode of the intrinsic 
chemical reaction iILself is measured by the normal meta-IRC [28]. Then, as a 
natural extension of the notion of the transition point, the intercell boundary 
((A~, Aj)) between a pair of the stable equilibrium points A, and Aj can be defined 
by the intersection of the boundaries as 

((A,, A0) = O Cell (A,) c~ O Cell (A,-) (2.1) 

where O Cell (A~) denotes the boundary of the Cell (A~). The IRC which connects 
A~ and Aj has the unique accumulation point in the intercell boundary ((A~, Aj)) 
from either cell, Cell (A~) or Cell (Aj). This point is nothing but the transition 
point. In other words, any idealized flux of particles which leave A~ for Aj along 
the meta-IRC becomes a minimum at the intercell boundary ((A~, Aj)). In this 
connection, the intercell boundary may serve the minimum-of-flux criterion 
for the definition of the dividing surface S [8, 5] in terms of the intrinsic dynamism 
of a reaction. 

Let us obtain the quantum mechanical expression of the rate constant kc.-a for 
the reaction (1.1). The general formula has been shown by Miller as follows [5, 6]: 

ke~A(T) = Q2 ~ tr [e- eH 3(f(q))(~f(q)/Oq).pm- ~],  (2.4a) 

where/3 = (kT)-1, (p, q) are the vectors of the nuclear momenta and coordinates 
of the system, QA is the partition function per unit volume of the reactant, H is the 
total Hamiltonian of the system, ~ projects onto all the states that have evolved in 
the infinite past from the reactant, andf(q) is a function which defines the dividing 
surface S via 

f(q) = 0; on S. (2.4b) 

Here, the dividing surface S is given by the intercell boundary: 

S = ((A, C)) (2.4c) 

(of course, we consider now the simplified example of the isomerization reaction 
(see Fig. 1), where the transition point B is isolated on the adiabatic potential 
energy surface and there are no intermediates in the course of the reaction). From 
the definition, the intercell boundary is energy-independent. Moreover, the IRC 
crosses the intercell boundary at right angles and the critical promoting mode of 
negative force constant at the transition point is exactly isolated from the stable 
normal modes of positive force constants lying on the intercell boundary [28]. 

From the 2-dimensional cross-sectional viewpoint, the cell and the intercell 
boundary are directly visualized using the pattern of reaction [28] as in Fig. 2. 
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3. Intrinsic Dynamism in the Cell 

3.1. The Intrinsic Reaction Time (IRT) and the Accumulat ion Time (AT) o f  React ion 

Suppose the n generalized coordinates q~ (i = 1 . . . . .  n) which describe the variation 
of  the nuclear geometry of  the chemically reacting system: the mass-weighted 
Cartesian coordinates x t (t = 1 . . . . .  3N), N being the number of the nuclei, are 
then described by 

x '  = xt(q 1 . . . . .  q~) (t = 1 . . . . .  3N). (3.1) 

Using the multidimensional vector [28] 

x = (x  1 . . . . .  X3N), (3.2) 

the infinitesimal displacement vector of the chemical reaction is given by 

dx = e~ dq' (3.3) 

(Einstein's summation convention is adopted in this paper) where 

e, = ~x/~q'  (i = 1 . . . . .  n). (3.4) 

The covariant components are found to be 

dx = e ~ dq~. (3.5) 

The relationship with the contravariant components are represented by 

dq, = a,j dq j (i = 1 . . . . .  n) (3.6) 

and hence 

ei : aije y 

where 

(i = I . . . . .  n), (3.7) 

SN 

a~j = e , . e j  = ~ (Oxt/Oq~)(~xt/Oq j) ( i , j  = 1 , . . . ,  n). (3.8) 
t = l  

Likewise, the gradient vector field of U is defined in terms of the generalized 
coordinate system by 

grad U = e ~ OU/Oq ~ = e~ OU/~q,. (3.9) 

Note that all these vectors are considered to be the vectors in the n-dimensional 
Riemannian space R, whose metric tensor is a~j (3.8) [28]. Using the above, the 
IRC equation [28] is now rewritten as 

dq~/ds = ( e U / ~ q ' ) / ( d f / d s )  (i = 1 , . . . ,  n), (3.10) 

where ds is the infinitesimal line element of the meta-IRC, which is represented by 
the first fundamental form of R, as 

ds 2 = aij dq ~ dq j, (3.11) 

and where dU/ds is given by 

dU/ds = (9 U/~q ~)(dq'/ds). (3.12) 
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On the other hand, let the intrinsic rate of the chemical reaction along the meta-IRC 
be e(x) and the intrinsic reaction time (IRT) be t '  (the IRT is a measure of the 
idealized locus of motion along the meta-IRC, which is not identified with the 
realistic time t), then the infinitesimal vector of the chemical reaction is c d t ' :  

d x  = c d t '  (3.13) 

and we have 

dq, = c~ d t '  ( i  = t . . . . .  n), (3.14) 

where 

c~ = e,. e (i --- 1, . . . .  n). (3.15) 

Thus, we obtain from (3.10) and (3.14) 

d q , / d t '  = c, = ( ~ U / a q ' ) ( d s / d t ' ) / ( d U / d s )  ( i  = 1 . . . .  , n)  (3.16) 

and the locus of  the meta-IRC has the form 

q~(t')  = q , ( t ' ;  x ( to ) )  ( i  = 1 , . . . ,  n) (3.17a) 

q ' ( t ' )  = q ' ( t ' ;  x(t'o)) ( i  = 1 . . . . .  n),  (3.17b) 

where t~ is the initial value of the IRT. This form defines the point transformation 
using the IRT as the parameter, which forms a one-parameter continuous group 
of transformations [45]. This group is referred to as G1. 

Now, let us introduce a new time-like parameter r of  G1 by 

y y"' 
r = [ (d s /d t ' ) / ( dU/ds ) ]  dr '  = d s / ( d U / d s ) ,  (3.18) 

which will be referred to as the accumulation time (AT) of reaction. Clearly, the 
AT is singular at any equilibrium point, where d U / d s  = 0; hence, we can use the 
AT as the continuous parameter of G1 only within the cell or the boundary exclud- 
ing the equilibrium points. Using the AT, the fundamental equation of GI is 
simplified as 

dq~(r) /dr  = OU/~q~(r)  (i = 1 , . . . ,  n) (3.19) 

and then, we have the locus of the meta-IRC in the form 

q, (r )  = eX~-~o)q,(ro) (i = 1 . . . . .  n) (3.20a) 

o r  

q'(r) = eX'~-*o'q'(ro) (i = 1 . . . . .  n), (3.20b) 

where ro is the initial value of the AT, and where X is the generator of G1 [45] : 

X = ( a U / e q ' )  ~/eq,  = (aU/aq , )  a /aq, .  (3.21) 

Now, it should be remembered that the IRT may change uniformly along the meta- 
IRC, while the AT directly depends on the reaction path, which is not uniform in 
general. In particular, at the stable equilibrium point Peq, we have the limiting value 
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(a) 

B 

C 

IRC (b) 
Fig. 1. (a) Pattern of isomerization reaction [28]: A (reactant) ~ B (transition point) --+ C 
(product). (b) Potential barrier along the IRC 

of the AT as �9 = - ~  irrespective of  the direction of the meta-IRC which accumu- 
lates at the Pea. At the transition point, however, we have r -- +oo along the IRC 
and r = - ~  along the meta-IRC which belongs to the intercell boundary. This is 
easily realized by examining the model reaction system undergoing the isomeriza- 
tion reaction (1.1) as is illustrated in Figs. I, 3. Moreover, at any equilibrium point 
Peq, the intrinsic rate e of  the reaction is given with respect to the IRT by 

d x / d t '  = c = v d s / d t '  ; at Pea, (3.22) 

where v is the vector o f  the normal vibration [28J. On the other hand, in terms of  
the AT, the " r a t e "  becomes zero at the Peq as is clear from (3.19): 

d x / d r  = 0; atPeq. (3 .23)  

The heterogeneous behavior of  (3.23) is characteristic of the intrinsic reaction 
dynamism with respect to the AT. 

It  should be remarked here that the limiting property of  the AT at the equilibrium 
point will play an important  role when we discuss the stable limit theorems in 
Sect. 5. 

"l/Ill/, s.o,o 
,/ 

(a) 

summit ~~~~ Smaddie 

(b) 
Fig. 2. Cell (A) (shaded region), Cell (C) (plain region), and intercell boundary ((A, C)) (dashed 
curve) in terms of the patterns of (a) isomerization reaction, and (b) fragmentation reaction [28] 
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Fig. 3. Pa th-dependent  values of  (a) dU/ds, and (b) (dU/ds)- 1 along the I R C  given in Fig. 1 

3.2 .  T h e  A c c u m u l a t i o n  T i m e  o f  R e a c t i o n  a n d  the  M e t a - I R C  

In this subsection, we investigate the relationship between the AT, the solution of 
the meta-IRC, and the adiabatic potential U. 

Performing a coordinate transformation, we have the solution of the meta-IRC as 
[28] 

d q ~  O, dq~---- 0 ( j =  1 . . . . .  n -  1), (3.24) 

O U / e q  'n # O, OU/Oq ' j  = 0 ( j  = 1 . . . .  , n - 1). (3.25) 

In other words, the displacement vector along the meta-IRC has the one-dimen- 
sional form [28] 

d x  = e '~ dq~. (3.26) 

Furthermore, let the succeeding coordinate transformation be 

f % dq~/( # # r 
q ,  = ~ U / O q ' " ) ,  q j  = q ,  ( j  = 1 . . . . .  n -  1), (3.27) 

In this q"-coordinate system, we have 

e U / O q " . =  1, a U / e q " J =  0 ( j  = 1 . . . . .  n -  1) (3.28) 

This shows that the q "" is equivalent to the potential U itself: 

q"" -~ U + const (3.29) 

where const is an additive constant. 

Now, differentiating 

U = const 

we have 

0 = dq ~ aU/Oq ~. 
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This shows that a displacement vector d x  = ei dq ~ lying on the U = const surface 
is orthogonal to the gradient vector field grad U = e ~ aU/Oq ~ of U. Therefore, we 
can choose a coordinate system q "  by making the n - 1 coordinates span the 
equi-potential surface and hence be orthogonal to the q""-curve: 

q " " =  q " " =  U + const , q"~ (k = 1 . . . .  , n -  1) (3.30) 

span the equi-potential surface. 

In this coordinate system, we have 

a ~ "=  a ' ' ~ = 0  ( k =  1 . . . . .  n -  1) (3.31) 

and the first fundamental form of R, becomes 

ds 2 . . . . . . .  k dq,,,z . . . . . . . . .  ,2 . 1). (3.32) = akz aq + a , , t a q  ) ( k ,  l = 1 , . .  , n -  

This shows that the q""-curve is nothing but the normal meta-IRC [28] (see Fig. 4). 
Then, we have 

a U / ~ q ' ~ =  1, ~ U / ~ q " k =  0 ( k  = 1 . . . . .  n -  1). (3.33) 

In this case, the generator X becomes 

X = ~/~q'~ (3.34) 
and the finite equations of the group G1 are found to be 

q;[(r) = q~'(ro) + r - 70, (3.35) 
q ~ ( r ) = q ' ~ ( r o )  ( k =  1 . . . . .  n -  1) 

or, the infinitesimal components are 

dq~ = d r ,  dq'~' = 0 ( k  = 1 . . . . .  n -  1). (3.36) 

The meta-IRC is now represented by the q~,'-curve and is equivalent to the AT 
itself; indeed, (3.26) is written as 

d x  = e " "  d r ,  (3.37) 

where e ' "  is the tangent vector of the meta-IRC. Also, using the relationship for 
the normal meta-IRC [28], we have 

dq '''~ = a "'~'~ dq~ = a ''~" d r ,  dq ''~ = 0 ( k  = 1 . . . . .  n - 1). (3.38) 

Mot~-IRC:q'~ ...... ~ f ~ n  

Normal Meta-lRC: ~'n 
q 'n_curve / /~1  

Equi-~tentiaL surface: 

q'n-sur face = q'n-surface 

Fig. 4. Geometry ofthereactionpathrepresented 
in terms of the normal coordinate system 



Intrinsic Dynamism in Chemically Reacting Systems 199 

On the other hand, we have from (3.30) 

dq"" = dU.  

Hence, we obtain the functional relationship of U with ~- as 

d U  = a ""~ dr. 

(3.39) 

(3.40) 

4. Quantum Mechauical Representation of the Local Intrinsic Dynamism 

In [28], we have introduced the local coordinates Au ~ (i -- 1 . . . . .  n) in order to 
describe the local structure of the chemically reacting system and besides, as the 
more convenient local coordinates, the local normal coordinates Ay ~ (c~ = 1 . . . . .  n) 
or the reduced local normal coordinates A)5 '~ (a = 1 , . . . , n ) ;  remark that 
(a',)~12Au '" in [28] is now conveniently written as Af '" in terms of the normal 
coordinate system in which the q'~-coordinate is the normal meta-IRC (see Fig. 4). 
By considering the Ay ~ or Ay '~ (a = 1 . . . .  , n) as the independent variables, the 
quantum mechanical Hamiltonian H of the system will be locally given by 

n 

H ( x  + Ax) = (1/2)~= p~ + U ( x  + Ax) 

where 

(4.1a) 

p~ = - ih OlOAy= (4.2a) 

o r  

fi" = - ih 0/OAy % (4.2b) 

It should be noted that, unlike the global Hamiltonian obtained by Podolsky [15], 
these local Hamiltonians (4.1a) or (4.1b) have separable k inet ic  energy operators. 

Then, the adiabatic potential is also represented in the alternative forms as follows. 

A) Ay-coordinate system. In this case, we have 

U ( x  + Ax) = ~, ( l /r!)  AY ~ " " " ~xA"~' n(u),_,~r..~,~[l (4.3a) 
r= 0 ~ l , . - . , C t r  = 1 

where the (r = 0)-term is nothing but U(x)  and the others are given by 

~r"~r = v<~p. -. v'('~,)Dir..i,. (4.3b) 

In this expression, Dw..~, is the differential operator, satisfying 

Di 1... ~,~, + 1 = ~ D~ 1...i,/~q i, + 1 

- ;i: (4.4) 
p = l  

= (1/2) ~ ft.2 + U(x + Ax) (4.1b) 
a = l  
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where I~  is the Christoffel symbol of the second kind [28]. For example, we have 
[28] 

D~ = alOq ~, (4.5a) 

D~j = ~2/Oq' ~qJ - F~ ~/~q~. (4.5b) 

The explicit form of (4.3) has been given in [28] up to the second order of the 
expansion. 

B) Ay'-coordinate system. In this case, we have 

U(x + A x ) =  ~ (l/r!) ~ AY '~1 " " " Ai~'~'D~Z)-" ~l.---,v,lf (4.6a) 
r = O  r j . . . , t t r  = 1 

D(~'> -'~l -'~' ' (4.6b) a l ' " a r  = V ( a l ) ' '  " v ( a l ) O i ~ ' . . i r ,  

where the reduced vector components v(,) (a, i = 1 , . . . ,  n - 1) are given by 
diagonalizing the Hessian matrix in the equi-potential surface [28] and the others 
are now defined by 

~ )  = 0'~,)~ = 0 (cr = 1 . . . . .  n - 1), (4.6c) 

v(,) (a~,)-1/28,~ (i = 1 . . . .  , n), (4.6d) 

~,)~ = (a~,,)~/23,~ (i = 1 . . . . .  n). (4.6e) 

Neglecting the higher-order terms, we have 

U(x + Ax) = U(x) + A V'~D?')U + (1/2) ~ #~(A)7'~) 2 
a = ' t  

n - 1  

+ ~ Ay'"Ay'"D~,~d'U + 0((Ay')3). (4.7) 
c~=]_ 

In this case, although the off-diagonal parts of the second-order terms cannot be 
eliminated, we have only one linear term of Ay '" in the expansion (4.7). Thus, the 
Hamiltonian in terms of the Ay'-coordinate system is more appropriate for the 
description of 1) the one-dimensional promotion of the chemical reaction along 
the meta-IRC, and 2) the residual vibrations confined in the equi-potential surface 
which is perpendicular to the meta-IRC. If  the requirement of the vibrational 
adiabaticity is fulfilled, then the two representations of the Hamiltonian, (4.1 a) and 
(4.1b), of course become identical. As a whole, it should be emphasized that the 
perturbation-free separable kinetic energy operator is more tractable than 
Podolsky's Hamiltonian with respect to the description of the local quantum 
mechanics of the chemically reacting system. 

5. Stable Limit Theorems 

In this section, the limiting behavior of the meta-IRC at an equilibrium point Pea 
is discussed. 

From (3.10), we have by virtue of l'Hospital's theorem 

dqJds --- (02 U/~q ~ Oq J)(dq i/ds)/(d 2 U/ds 2); at Poq (5.1) 
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and therefore 

(~2U/~q~ ~qJ - (d2U/ds2)a~j) dqJ/ds = 0; at Peq. (5.2) 

This shows that the motion along the meta-IRC should become one of the normal 
vibrations at the Peq; then, the force constant is given by d 2 U / d s L  

Since the stable equilibrium point is the center of the cell where the idealized 
reaction may start or finish, it will be of primary importance to investigate which 
normal vibrational mode the meta-IRC should converge to, or which normal 
vibration the reaction may make useful for the initializing motion of the reaction. 

We show that the weakest normal mode has the unique nature compared with the 
stronger normal modes in terms of  the boundary condition with respect to the 
intrinsic dynamism at the stable equilibrium point. 

In the present treatment, the characteristic limiting value of the AT plays an 
important role: r become - o o  if the meta-IRC converges to the stable mode of 
positive force constant, while , becomes + oo if the meta-IRC converges to the 
unstable normal mode of negative force constant. This heterogeneous character of 
the AT has been clearly distinguished from the uniform character of  the IRT in the 
text (see the discussions following (3.18)). Provided that we were working in an 
Euclidean space, the analogous situation is well known: in the usual textbook 
approach [35, 46] and recently in the study of the orthogonal trajectories of the 
electron density by Collard and Hall [47], one may find the infinite character of the 
AT-like parameter, though without showing the ab initio reasoning of the character 
itself. 

Now, in terms of  the local normal coordinates Ay~ (~ = 1 . . . . .  n), the IRC 
equation is reduced from (3.19) to 

dAyO/d.~ = ~ U ( x  + a x ) / ~ a y ~  (,~ = 1 . . . .  , n),  (5.3) 

where the r.h.s, of  this equation is evaluated by (4.3). In the neighborhood of the 
equilibrium point, the local IRC equation (5.3) can then be approximated to be 

dAy~/dr  ~ t*~Ay ~ (~ = 1 . . . . .  n). (5.4) 

Neglecting the higher order contributions of unharmonicity, the solution becomes 

Ay~ ~ ca exp (/~-) (~ = 1 . . . .  , n), (5.5) 

where e~ (a = 1 . . . . .  n) are the integral constants which govern the boundary 
condition of the meta-IRC at the equilibrium point. Then, we obtain 

dAy~/ds ",~ c~tz~ exp (/X~T Celz e exp (2txBr (a --- 1 . . . . .  n). (5.6) 
= 

Note that at the stable equilibrium point, r becomes -0% and then, by omitting 
the orientation of the vector from our consideration, we have 

dAy~/ds  ~ (cd*Jc~= m~nt~= rain) exp [(t~ -- t~=m~)r] (a = 1 . . . . .  n), (5.7) 
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where a = min designates the normal mode of minimal force constant whose con- 
tribution is non-zero. It follows that 

dAy~/ds= 1; i f ~ = m i n  

= 0; otherwise. (5.8) 

Hence, we have 

dq~/ds=v~=mln), i.e., dx/ds= V(~=mln); a t ~ - = - - o o .  (5.9) 

This shows that any idealized locus of the chemical reaction proceeding along the 
meta-IRC should converge to the weakest normal mode that is available at the stable 
equilibrium point. Using this important property, we shall prove the theorem: 

Theorem 1. It is most probable for any intrinsic chemical reaction promoting along 
the meta-IRC to converge to the weakest normal mode at the stable equilibrium 
point. 

This is referred to as the stable limit theorem 1. 

Proof. Any intrinsic chemical reaction in the Cell (Pea) is represented by a point in 
the space spanned by c~ (a = 1 . . . . .  n) which specify the boundary condition at 
the stable equilibrium point Peq: this space is referred to as V. Suppose the force 
constants at the Pea be given in the sequence of tL, > /z s if i < j :  

/~1 > /~2 > ' ' "  > /~n > 0 .  

Then, it is found that the meta-IRC should converge to the weakest normal mode n 
unless cn = 0. In other words, the meta-IRC cannot converge to the weakest 
normal mode n if the representative point of the meta-IRC belongs to the (c, = 0)- 
hypersurface in V. Clearly, the (cn = 0)-hypersurface has measure zero in V; 
therefore, we can find a meta-IRC which converges to the weakest normal mode n 
almost everywhere in V. This proves the theorem. 

Moreover, using the property that the meta-IRC is perpendicular to the equi- 
potential surface in the cell, we have 

Theorem 2. It is most probable that the normal modes on the equi-potential surface 
along the meta-IRC should converge to the non-weakest normal modes at the stable 
equilibrium point. 

This is referred to as the stable limit theorem 2. The proof is trivial. 

To summarize, we conclude that almost all the intrinsic chemical reactions, in 
their idealized loci, start by using the weakest normal vibration at the stable 
equilibrium point, proceed along the IRC accompanying the stronger vibrations 
in the equi-potential surface (in the initial stage of the reaction), and reach the 
transition point to give the critical normal vibration of negative force constant; 
after overriding the transition point, the reaction along the IRC is most likely to 
converge to the weakest normal mode of the product. 

Using a model potential surface, the applicability of the stable limit theorems will 
be clearly shown in the next section. 
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Furthermore, at any saddle, we have two kinds of  normal modes: the (~- = -oo)-  
modes and the (~- = + m)-modes corresponding to the positive force constants and 
the negative force constants, respectively (at the summit of the potential surface, 
we have only the (~ = + m)-modes). If  the converged normal mode belongs to the 
former set of (T ~-- --c~)-modes, then we have (5.9) in the same way. On the other 
hand, if the converged normal mode belongs to the latter set of (r = + ov)-modes, 
then we have a quite different result: 

dq~/ds = v~=m~x~, i.e., dx/ds  = v( . . . . .  ~; at r = + ~ ,  (5.10) 

where ~ = max designated the normal mode of max ima l  (remark that this mode 
is the weakes t  in the (r -- + ov)-modes) force constant whose contribution is non- 
zero. Note that at any unstable equilibrium point, these two kinds of mixed 
characters, (5.9) and (5.10), will be useful for the analysis of the intrinsic dynamism 
according as the meta-IRC lies on the intercell boundary or not; the mixed 
characters themselves may be arranged to be referred to as the unstable limit 
theorem. 

In the study of chemical reactions that are selected by the excitation of a single 
normal mode at a stable equilibrium point [48], the implications of the stable limit 
theorems may play an important role. Also, then, the effect of the conservation of 
symmetry may be significant, particularly for the distribution of the initially 
activated vibrational[ modes [21, 49, 50]. Moreover, the detailed information with 
respect to the geometry of the adiabatic potential energy surface itself will be useful 
when we consider the nonadiabatic reactions where the state degeneracy gives the 
significant effect in the geometry of the surface. Finally, it should be noted that the 
force-theoretical arguments [51, 52] are helpful for the IRC approach; the electronic 
properties of the chemically reacting system are intimately related to the variation of 
the gradient field of the adiabatic potential energy surface. 

6. Example 

Here, we give a model of the isomerization reaction (1.1) and elucidate some of the 
results of  the present theory. 

The shape of the model potential is depicted in Fig. 6 of [28]. The solution of the 
meta-IRC is represented by [28] 

xl = 0,�89 1 
(6.1) 

x2 = c•  • I x 1 -  11 x I x x -  1/21-21a2'b2; a >  b, 

where x~ and x2 are the generalized coordinates in an Euclidean coordinate space, 
and where c is a constant. 

We shall examine the behavior of the reduced normal vibrations on the equi- 
potential surface along the meta-IRC in Cell (A); in Cell (C), we have the mirror 
image of the situation in Cell (A). The eigenvector and the eigenvalue of the 
Hessian matrix on the equi-potential surface are obtained in Cell (A) as follows: 

~1~ = ( f l ( f 2  + g2)112, _ g l ( f 2  + g2)112), (6.2) 

~1 = [(12/a2)(xl -- e,+)(x~ - o~_)f 2 + (2/bZ)g~]/( f  2 + g2), (6.3) 
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where c~i are the certain constants [28], and where 

f = ( 2 / b 2 ) c / ( 2 / a 2 ) x l ( x l  - 1)(2xl - 1), (6.4) 

g = c / x 2 .  (6.5) 

Note that the orientation of the vector is omitted from our consideration. Now, at 
the center A of  Cell (A), we have (see Fig. 5a) 

g m =  (0, 1); at A, (6.6) 

#1 = 2 /b2;  at A. (6.7) 

This is the hardest normal mode at A, and hence this confirms the stable limit 
theorem 2. Interestingly, this normal mode is invariably transferred in a parallel 
way along the IRC (see Fig. 5b): 

~,~ = (0, 1); x~  = o,  (6 .8 )  

g l  = 2 /b2;  x2  = 0. (6.9) 

On the other hand, the isolated solution of the meta-IRC that converges smoothly 
to the hardest normal mode at A is 

x l  = 0. (6.10) 

x 2 

~ ' x  1 

x 2 

(a) (b) 

((A,C}) 
x2 x 2 ~/ 

I/ \ I 

B 

�9 X 1 ~ 1 

0 ~ 112 

l 
I 

I 

(c) (~) 

Fig. 5. Vectors <-* of the reduced normal vibrations on the equi-potential surface along (b) the 
IRC, (c) the isolated meta-IRC which is rarely found on account of the stable limit theorem 2, 
and (a, d) all the other meta-IRC's in the Cell (A). Some of the representative meta-IRC's are 
drawn by solid curves and lines. Also, (d) shows the behavior of the reduced normal vibration 
in the limit at the intercell boundary ((A, C)) 
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A l o n g  this me ta - IRC,  in order  to make  the value of  x2 finite, the cons tan t  c should  
formal ly  diverge to infinite. Then we have (see Fig. 5c) 

~(a) = (1, 0); x:t = 0, (6.11) 

~1 = 2/a2; x l  = 0. (6.12) 

This  is o f  course the weakest  no rma l  mode  at  A.  Moreover ,  it may  be worthwhi le  
to  examine the behavior  o f  the reduced norma l  v ibra t ion  in the l imit  at  the intercell  
b o u n d a r y  ((A, C)). A l o n g  the IRC,  we have (6.8) and  (6.9), while the others  satisfy 
(see Fig.  5d) 

~(~)--~(1,0);  x~---~ 1/2, x2 ~ 0, (6.13) 

~1--~-1/a2;  x~--~ 1/2, x2 4 0. (6.14) 

This  is no th ing  bu t  the crit ical no rma l  mode  o f  negative force cons tant  a t  the 
t rans i t ion  po in t  B [28]. This mode  may  act  as the escaping mode  o f  the intr insic 
reactive flux tha t  oozes f rom the Cell (A) to the adjacent  Cell (C) th rough  the 
intercel l  b o u n d a r y  ((A, C)). 
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